Exercice 13

• Montrons que Ker $f \subset \text{Ker } f^2$. Soit $x \in \text{Ker } f$. Alors $f(x) = 0_E$, donc

$$f^2(x) = f(f(x)) = f(0_E) = 0_E$$
 car f est linéaire

Ainsi, $x \in \text{Ker } f^2$. D'où le résultat.

• Montrons que $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Soit $y \in \operatorname{Im} f^2$. Alors il existe $x \in E$ tel que

$$y = f^2(x) = f(f(x))$$

En posant $x' = f(x) \in E$, on a donc y = f(x'). On en déduit que $y \in \text{Im } f$. D'où le résultat.

- Montrons la première équivalence.
 - Sens réciproque : supposons $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$. Montrons que $\operatorname{Ker} f = \operatorname{Ker} f^2$. Par ce qui précède, on a déjà $\operatorname{Ker} f \subset \operatorname{Ker} f^2$. Il suffit donc de montrer que $\operatorname{Ker} f^2 \subset \operatorname{Ker} f$. Soit donc $x \in \operatorname{Ker} f^2$. On a

$$f^2(x) = f(f(x)) = 0_E$$

Ainsi, en posant y = f(x), on a d'une part $y \in \operatorname{Ker} f$. D'autre part, comme y = f(x), on a $y \in \operatorname{Im} f$. Ainsi, $y \in \operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$ par hypothèse. D'où y = 0. On en déduit que f(x) = 0, càd $x \in \operatorname{Ker} f$. Par arbitraire sur x, $\operatorname{Ker} f^2 \subset \operatorname{Ker} f$.

- Sens direct : supposons $\operatorname{Ker} f = \operatorname{Ker} f^2$. Montrons que $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$. Soit $y \in \operatorname{Ker} f \cap \operatorname{Im} f$. On a $y \in \operatorname{Im} f$, donc il existe $x \in E$ tel que y = f(x). De plus, $y \in \operatorname{Ker} f$ donc

$$f(y) = f(f(x)) = 0_E$$

Ainsi, $x \in \text{Ker } f^2$. Or, $\text{Ker } f^2 = \text{Ker } f$ donc $x \in \text{Ker } f$. Finalement, f(x) = 0 donc y = 0. Par arbitraire sur y, on a $\text{Ker } f \cap \text{Im } f = \{0\}$.

- Montrons la seconde équivalence.
 - Sens réciproque : supposons $\operatorname{Ker} f + \operatorname{Im} f = E$. Montrons que $\operatorname{Im} f = \operatorname{Im} f^2$. Par ce qui précède, on a déjà $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Il suffit donc de montrer que $\operatorname{Im} f \subset \operatorname{Im} f^2$. Soit donc $y \in \operatorname{Im} f$. Alors il existe $x \in E$ tel que y = f(x). Or, comme $x \in E = \operatorname{Ker} f + \operatorname{Im} f$,

il existe $x_K \in \text{Ker } f \text{ et } x_I \in \text{Im } f \text{ tels que } x = x_K + x_I$

Ainsi, comme f est linéaire,

$$f(x) = f(x_K + x_I) = f(x_K) + f(x_I) = 0_E + f(x_I) = f(x_I)$$

On en déduit que $y = f(x) = f(x_I)$. Or, comme $x_I \in \text{Im } f$, il existe $z \in E$ tel que $x_I = f(z)$. Ainsi,

$$y = f(x_I) = f(f(z)) = f^2(z)$$

donc $y \in \operatorname{Im} f^2$. Par arbitraire sur y, $\operatorname{Im} f \subset \operatorname{Im} f^2$.

G. Peltier

– Sens direct : supposons $\operatorname{Im} f = \operatorname{Im} f^2$. Montrons que $\operatorname{Ker} f + \operatorname{Im} f = E$. Une inclusion est évidente. Montrons alors que $E \subset \operatorname{Ker} f + \operatorname{Im} f$. Soit $x \in E$. Étant donné $z \in E$, on peut écrire

$$x = x - z + z$$

On cherche alors z tel que $x - z \in \text{Ker } f$ et $z \in \text{Im } f$. Ainsi, cela revient à montrer que

$$\exists z \in \operatorname{Im} f \qquad x - z \in \operatorname{Ker} f$$

Or, $z \in \text{Im } f$ si et seulement s'il existe $x' \in E$ tel que z = f(x'). Ainsi,

$$\exists z \in \operatorname{Im} f \qquad x - z \in \operatorname{Ker} f$$

$$\iff \exists x' \in E \qquad x - f(x') \in \operatorname{Ker} f$$

$$\iff \exists x' \in E \qquad f(x - f(x')) = 0$$

$$\iff \exists x' \in E \qquad f(x) - f^{2}(x') = 0$$

$$\iff \exists x' \in E \qquad f(x) = f^{2}(x')$$

$$\iff f(x) \in \operatorname{Im} f^{2}$$

Or, $f(x) \in \text{Im } f = \text{Im } f^2$, donc la dernière assertion ci-dessus est vraie. Finalement, en posant $x' \in E$ tel que $f(x) = f^2(x')$, on a

$$x = \underbrace{x - f(x')}_{\in \text{Ker } f} + \underbrace{f(x')}_{\in \text{Im } f}$$

D'où $x \in \text{Ker } f + \text{Im } f$. Par arbitraire sur $x, E \subset \text{Ker } f + \text{Im } f$. D'où le résultat.

Exercice 17

Première assertion, sens réciproque : montrons que Ker p = Ker q. Comme p,q jouent des rôles symétriques, il suffit de montrer que Ker $p \subset \text{Ker } q$. Soit donc $x \in \text{Ker } p$. Alors

$$q(x) = (q \circ p)(x) = q(p(x)) = q(0_E) = 0_E$$

d'où $x \in \text{Ker } q$. D'où le résultat.

Première assertion, sens direct : on suppose $\operatorname{Ker} p = \operatorname{Ker} q$. Comme p,q jouent des rôles symétriques, il suffit de montrer que $p \circ q = p$. Soit $x \in E$. Comme $E = \operatorname{Ker} q \oplus \operatorname{Im} q$, on peut écrire

$$x = x_K + x_I$$
 avec $x_K \in \text{Ker } q$ et $x_I \in \text{Im } q$

Alors on a $q(x_K) = 0_E$ et $q(x_I) = x_I$, donc

$$(p \circ q)(x) = p(q(x_K + x_I))$$

= $p(q(x_K) + q(x_I))$ par linéarité
= $p(x_I)$

Or.

$$p(x) = p(x_K + x_I)$$

$$= p(x_K) + p(x_I)$$

$$= 0 + p(x_I) \qquad \operatorname{car} x_K \in \operatorname{Ker} q = \operatorname{Ker} p$$

G. Peltier

D'où $p(x) = p \circ q(x)$.

Deuxième assertion, sens réciproque : montrons que $\operatorname{Im} p = \operatorname{Im} q$. Comme p,q jouent des rôles symétriques, il suffit de montrer que $\operatorname{Im} p \subset \operatorname{Im} q$. Soit donc $y \in \operatorname{Im} p$. Alors il existe $x \in E$ tel que y = p(x). Dans ce cas,

$$y = p(x) = (q \circ p)(x) = q(p(x))$$

donc $y \in \text{Im } q$. D'où le résultat.

Deuxième assertion, sens direct : on suppose $\operatorname{Im} p = \operatorname{Im} q$. Comme p,q jouent des rôles symétriques, il suffit de montrer que $p \circ q = q$. Soit donc $y \in E$. Comme $E = \operatorname{Ker} q \oplus \operatorname{Im} q$, on peut écrire

$$y = y_K + y_I$$
 avec $y_K \in \text{Ker } q$ et $y_I \in \text{Im } q$

Alors d'une part,

$$q(y) = y_I$$

et d'autre part,

$$(p \circ q)(y) = p(q(y_K + y_I)) = p(y_I)$$

Or, $y_I \in \text{Im } q = \text{Im } p$, donc $p(y_I) = y_I$. Ainsi

$$(p \circ q)(y) = y_I$$

Par arbitraire sur y, on a donc $p \circ q = q$.

Exercice 20

- 1) Il suffit de montrer que φ_k est linéaire.
- 2) Montrons que $(\varphi_0, \cdots, \varphi_n)$ est libre. Soit $\lambda_0, \cdots, \lambda_n \in \mathbb{K}$. On suppose que

$$\lambda_0 \varphi_0 + \ldots + \lambda_n \varphi_n = 0_{E^*}$$

Ainsi, pour tout $P \in E$, on a

$$\lambda_0 \varphi_0(P) + \ldots + \lambda_n \varphi_n(P) = 0_{E^*}(P)$$

 $\Longrightarrow \lambda_0 P(0) + \ldots + \lambda_n P(n) = 0$

Soit $i \in [0, n]$. On affirme qu'il existe un polynôme $L_i \in E$ qui vérifie :

$$L_i(i) = 1$$
 $\forall j \in [0, n] \setminus \{i\}$ $L_i(j) = 0$

En effet, c'est le polynôme de Lagrange associé aux points (i, 1) et (j, 0) avec $j \in [0, n] \setminus \{i\}$. Alors, avec $P = L_i$, on obtient que

$$\lambda_i \times 1 = 0$$

D'où $\lambda_i = 0$. Par arbitraire sur i, on a donc $\lambda_0 = \ldots = \lambda_n = 0$.

3) On pose $\psi: P \mapsto \int_0^n P(t)dt$. Montrons que ψ est une forme linéaire sur E. Soit $\alpha, \beta \in \mathbb{R}$ et $P, Q \in E$. Alors

$$\psi(\alpha P + \beta Q) = \int_0^n (\alpha P + \beta Q)(t)dt$$
$$= \int_0^n [\alpha P(t) + \beta Q(t)]dt$$
$$= \alpha \int_0^n P(t)dt + \beta \int_0^n Q(t)dt$$
$$= \alpha \psi(P) + \beta \psi(Q)$$

On en déduit que ψ est linéaire. De plus ψ est clairement une application de E dans $\mathbb R$ donc $\psi \in E^*$. Par la question précédente, on en déduit qu'il existe $\lambda_0, \cdots, \lambda_n \in \mathbb K$ tels que

$$\psi = \lambda_0 \varphi_0 + \ldots + \lambda_n \varphi_n$$

Ainsi, pour tout $P \in E$, on a donc

$$\psi(P) = \lambda_0 \varphi_0(P) + \ldots + \lambda_n \varphi_n(P)$$
$$\int_0^n P(t)dt = \lambda_0 P(0) + \ldots + \lambda_n P(n)$$

G. Peltier 4/4